.. # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. NvImgCodec ---------- NvImgCodec is NVIDIA's hardware-accelerated image codec library, providing high-performance decoding and encoding for various image formats (JPEG, PNG, TIFF, etc.). It can decode images directly to GPU memory. **Key Points:** * Decodes images directly to GPU memory * Supports hardware-accelerated encoding * Integrates seamlessly with CV-CUDA via CUDA Array Interface **Required Imports:** .. literalinclude:: ../../../samples/interoperability/nvimgcodec_interop.py :language: python :start-after: docs_tag: begin_imports :end-before: docs_tag: end_imports **Setup NvImgCodec:** .. literalinclude:: ../../../samples/interoperability/nvimgcodec_interop.py :language: python :start-after: docs_tag: begin_init_nvimgcodec :end-before: docs_tag: end_init_nvimgcodec :dedent: 4 **NvImgCodec to CV-CUDA:** .. literalinclude:: ../../../samples/interoperability/nvimgcodec_interop.py :language: python :start-after: docs_tag: begin_nvimgcodec_to_cvcuda :end-before: docs_tag: end_nvimgcodec_to_cvcuda :dedent: 4 The second parameter ``"HWC"`` specifies the layout (Height × Width × Channels). NvImgCodec images are decoded directly to GPU memory and can be immediately converted to CV-CUDA tensors. **Process with CV-CUDA:** .. literalinclude:: ../../../samples/interoperability/nvimgcodec_interop.py :language: python :start-after: docs_tag: begin_cvcuda_resize :end-before: docs_tag: end_cvcuda_resize :dedent: 4 You can apply any CV-CUDA operation to the tensor. Here we resize the image to 224×224 using cubic interpolation. **CV-CUDA to NvImgCodec:** .. literalinclude:: ../../../samples/interoperability/nvimgcodec_interop.py :language: python :start-after: docs_tag: begin_cvcuda_to_nvimgcodec :end-before: docs_tag: end_cvcuda_to_nvimgcodec :dedent: 4 The processed CV-CUDA tensor can be converted back to an NvImgCodec image and encoded to disk, all without leaving GPU memory. **Typical Use Cases:** * Batch image preprocessing for inference * Image transformation pipelines (resize, color conversion, etc.) * High-throughput image processing * Building end-to-end GPU pipelines from disk to inference **Complete Example:** See ``samples/interoperability/nvimgcodec_interop.py``