.. # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. .. _sample_resize: Resize ====== Overview -------- The Resize sample demonstrates image resizing using CV-CUDA's GPU-accelerated resize operator. Usage ----- Basic Usage ^^^^^^^^^^^ Resize an image to 224×224 (default): .. code-block:: bash python3 resize.py -i input.jpg Custom Dimensions ^^^^^^^^^^^^^^^^^ Specify target width and height: .. code-block:: bash python3 resize.py -i image.jpg -o resized.jpg --width 512 --height 512 Command-Line Arguments ---------------------- .. list-table:: :header-rows: 1 :widths: 20 15 15 50 * - Argument - Short Form - Default - Description * - ``--input`` - ``-i`` - tabby_tiger_cat.jpg - Input image file path * - ``--output`` - ``-o`` - cvcuda/.cache/cat_resized.jpg - Output image file path * - ``--width`` - - 224 - Target width in pixels * - ``--height`` - - 224 - Target height in pixels Implementation -------------- Single Image Resize ^^^^^^^^^^^^^^^^^^^ .. literalinclude:: ../../../../samples/operators/resize.py :language: python :start-after: docs_tag: begin_resize :end-before: docs_tag: end_resize :dedent: Key points: 1. **Output Shape**: Must match input dimensions (H, W, C) 2. **Interpolation**: Default is linear (bilinear) 3. **Aspect Ratio**: Not preserved by default Interpolation Methods ^^^^^^^^^^^^^^^^^^^^^ Available interpolation methods: ``LINEAR`` (default, good balance), ``NEAREST`` (fastest), ``CUBIC`` (highest quality), ``AREA`` (best for downscaling). Specify with :pydata:`cvcuda.Interp.LINEAR`, etc. Expected Output ^^^^^^^^^^^^^^^ The output shows the image resized to the target dimensions (default 224×224): .. list-table:: :widths: 50 50 :align: center * - .. figure:: ../../content/tabby_tiger_cat.jpg :width: 100% Original Input Image - .. figure:: ../../content/cat_resized.jpg :width: 100% Output: Resized to 224×224 CV-CUDA Operators Used ^^^^^^^^^^^^^^^^^^^^^^ .. list-table:: :header-rows: 1 :widths: 30 70 * - Operator - Purpose * - :py:func:`cvcuda.resize` - Resize images to target dimensions with specified interpolation Common Utilities Used ^^^^^^^^^^^^^^^^^^^^^ * :ref:`read_image() ` - Load image as CV-CUDA tensor * :ref:`write_image() ` - Save resized image See Also -------- * :ref:`Hello World Sample ` - Uses resize in pipeline * :ref:`Classification Sample ` - Resizes for model input * :ref:`Reformat Operator ` - Change tensor layouts * :ref:`Common Utilities ` - Helper functions