Remap
- cvcuda.remap(*args, **kwargs)
Overloaded function.
remap(src: nvcv.Tensor, map: nvcv.Tensor, src_interp: cvcuda.Interp = <Interp.NEAREST: 0>, map_interp: cvcuda.Interp = <Interp.NEAREST: 0>, map_type: cvcuda.Remap = <Remap.ABSOLUTE: 0>, align_corners: bool = False, border: cvcuda.Border = <Border.CONSTANT: 0>, border_value: numpy.ndarray[numpy.float32] = array([], dtype=float32), *, stream: Optional[nvcv.cuda.Stream] = None) -> nvcv.Tensor
cvcuda.remap(src: nvcv.Tensor, map: nvcv.Tensor, src_interp: cvcuda.Interp = cvcuda.Interp.NEAREST, map_interp: cvcuda.Interp = cvcuda.Interp.NEAREST, map_type: cvcuda.Remap = cvcuda.Remap.ABSOLUTE, align_corners: bool = False, border: cvcuda.Border = cvcuda.Border.CONSTANT, border_value: numpy.ndarray = np.ndarray((0,)), stream: Optional[nvcv.cuda.Stream] = None) -> nvcv.Tensor
Executes the Warp Perspective operation on the given cuda stream.
- See also:
Refer to the CV-CUDA C API reference for the Remap operator for more details and usage examples.
- Args:
src (nvcv.Tensor): Input tensor. src_interp (cvcuda.Interp, optional): Interpolation type used when fetching values
from the source image.
- map_interp (cvcuda.Interp, optional): Interpolation type used when fetching values
from the map tensor.
- map_type (cvcuda.Remap, optional): This determines how the values inside the map are
interpreted. If it is cvcuda.Remap.ABSOLUTE the map values are absolute, denormalized positions in the input tensor to fetch values from. If it is cvcuda.Remap.ABSOLUTE_NORMALIZED the map values are absolute, normalized positions in [-1, 1] range to fetch values from the input tensor in a resolution agnostic way. If it is cvcuda.Remap.RELATIVE_NORMALIZED the map values are relative, normalized offsets to be applied to each output position to fetch values from the input tensor, also resolution agnostic.
- align_corners (bool, optional): The remap operation from output to input via the map
is done in the floating-point domain. If
True
, they are aligned by the center points of their corner pixels. Otherwise, they are aligned by the corner points of their corner pixels.- border (cvcuda.Border, optional): pixel extrapolation method (cvcuda.Border.CONSTANT,
cvcuda.Border.REPLICATE, cvcuda.Border.REFLECT, cvcuda.Border.REFLECT_101, or cvcuda.Border.WRAP).
- border_value (numpy.ndarray, optional): Used to specify values for a constant border,
should have size <= 4 and dim of 1, where the values specify the border color for each color channel.
stream (nvcv.cuda.Stream, optional): CUDA Stream on which to perform the operation.
- Returns:
nvcv.Tensor: The output tensor.
- Caution:
Restrictions to several arguments may apply. Check the C API references of the CV-CUDA operator.
remap(src: nvcv.ImageBatchVarShape, map: nvcv.Tensor, src_interp: cvcuda.Interp = <Interp.NEAREST: 0>, map_interp: cvcuda.Interp = <Interp.NEAREST: 0>, map_type: cvcuda.Remap = <Remap.ABSOLUTE: 0>, align_corners: bool = False, border: cvcuda.Border = <Border.CONSTANT: 0>, border_value: numpy.ndarray[numpy.float32] = array([], dtype=float32), *, stream: Optional[nvcv.cuda.Stream] = None) -> nvcv.ImageBatchVarShape
cvcuda.remap(src: nvcv.ImageBatchVarShape, map: nvcv.Tensor, src_interp: cvcuda.Interp = cvcuda.Interp.NEAREST, map_interp: cvcuda.Interp = cvcuda.Interp.NEAREST, map_type: cvcuda.Remap = cvcuda.Remap.ABSOLUTE, align_corners: bool = False, border: cvcuda.Border = cvcuda.Border.CONSTANT, border_value: numpy.ndarray = np.ndarray((0,)), stream: Optional[nvcv.cuda.Stream] = None) -> nvcv.ImageBatchVarShape
Executes the Warp Perspective operation on the given cuda stream.
- See also:
Refer to the CV-CUDA C API reference for the Remap operator for more details and usage examples.
- Args:
src (nvcv.ImageBatchVarShape): Input image batch. src_interp (cvcuda.Interp, optional): Interpolation type used when fetching values
from the source image.
- map_interp (cvcuda.Interp, optional): Interpolation type used when fetching values
from the map tensor.
- map_type (cvcuda.Remap, optional): This determines how the values inside the map are
interpreted. If it is cvcuda.Remap.ABSOLUTE the map values are absolute, denormalized positions in the input tensor to fetch values from. If it is cvcuda.Remap.ABSOLUTE_NORMALIZED the map values are absolute, normalized positions in [-1, 1] range to fetch values from the input tensor in a resolution agnostic way. If it is cvcuda.Remap.RELATIVE_NORMALIZED the map values are relative, normalized offsets to be applied to each output position to fetch values from the input tensor, also resolution agnostic.
- align_corners (bool, optional): The remap operation from output to input via the map
is done in the floating-point domain. If
True
, they are aligned by the center points of their corner pixels. Otherwise, they are aligned by the corner points of their corner pixels.- border (cvcuda.Border, optional): pixel extrapolation method (cvcuda.Border.CONSTANT,
cvcuda.Border.REPLICATE, cvcuda.Border.REFLECT, cvcuda.Border.REFLECT_101, or cvcuda.Border.WRAP).
- border_value (numpy.ndarray, optional): Used to specify values for a constant border,
should have size <= 4 and dim of 1, where the values specify the border color for each color channel.
stream (nvcv.cuda.Stream, optional): CUDA Stream on which to perform the operation.
- Returns:
nvcv.ImageBatchVarShape: The output image batch.
- Caution:
Restrictions to several arguments may apply. Check the C API references of the CV-CUDA operator.
- cvcuda.remap_into(*args, **kwargs)
Overloaded function.
remap_into(dst: nvcv.Tensor, src: nvcv.Tensor, map: nvcv.Tensor, src_interp: cvcuda.Interp = <Interp.NEAREST: 0>, map_interp: cvcuda.Interp = <Interp.NEAREST: 0>, map_type: cvcuda.Remap = <Remap.ABSOLUTE: 0>, align_corners: bool = False, border: cvcuda.Border = <Border.CONSTANT: 0>, border_value: numpy.ndarray[numpy.float32] = array([], dtype=float32), *, stream: Optional[nvcv.cuda.Stream] = None) -> nvcv.Tensor
cvcuda.remap_into(dst: nvcv.Tensor, src: nvcv.Tensor, map: nvcv.Tensor, src_interp: cvcuda.Interp = cvcuda.Interp.NEAREST, map_interp: cvcuda.Interp = cvcuda.Interp.NEAREST, map_type: cvcuda.Remap = cvcuda.Remap.ABSOLUTE, align_corners: bool = False, border: cvcuda.Border = cvcuda.Border.CONSTANT, border_value: numpy.ndarray = np.ndarray((0,)), stream: Optional[nvcv.cuda.Stream] = None)
Executes the Warp Perspective operation on the given cuda stream.
- See also:
Refer to the CV-CUDA C API reference for the Remap operator for more details and usage examples.
- Args:
dst (nvcv.Tensor): Output tensor. src (nvcv.Tensor): Input tensor. src_interp (cvcuda.Interp, optional): Interpolation type used when fetching values
from the source image.
- map_interp (cvcuda.Interp, optional): Interpolation type used when fetching values
from the map tensor.
- map_type (cvcuda.Remap, optional): This determines how the values inside the map are
interpreted. If it is cvcuda.Remap.ABSOLUTE the map values are absolute, denormalized positions in the input tensor to fetch values from. If it is cvcuda.Remap.ABSOLUTE_NORMALIZED the map values are absolute, normalized positions in [-1, 1] range to fetch values from the input tensor in a resolution agnostic way. If it is cvcuda.Remap.RELATIVE_NORMALIZED the map values are relative, normalized offsets to be applied to each output position to fetch values from the input tensor, also resolution agnostic.
- align_corners (bool, optional): The remap operation from output to input via the map
is done in the floating-point domain. If
True
, they are aligned by the center points of their corner pixels. Otherwise, they are aligned by the corner points of their corner pixels.- border (cvcuda.Border, optional): pixel extrapolation method (cvcuda.Border.CONSTANT,
cvcuda.Border.REPLICATE, cvcuda.Border.REFLECT, cvcuda.Border.REFLECT_101, or cvcuda.Border.WRAP).
- border_value (numpy.ndarray, optional): Used to specify values for a constant border,
should have size <= 4 and dim of 1, where the values specify the border color for each color channel.
stream (nvcv.cuda.Stream, optional): CUDA Stream on which to perform the operation.
- Returns:
None
- Caution:
Restrictions to several arguments may apply. Check the C API references of the CV-CUDA operator.
remap_into(dst: nvcv.ImageBatchVarShape, src: nvcv.ImageBatchVarShape, map: nvcv.Tensor, src_interp: cvcuda.Interp = <Interp.NEAREST: 0>, map_interp: cvcuda.Interp = <Interp.NEAREST: 0>, map_type: cvcuda.Remap = <Remap.ABSOLUTE: 0>, align_corners: bool = False, border: cvcuda.Border = <Border.CONSTANT: 0>, border_value: numpy.ndarray[numpy.float32] = array([], dtype=float32), *, stream: Optional[nvcv.cuda.Stream] = None) -> nvcv.ImageBatchVarShape
cvcuda.remap_into(dst: nvcv.ImageBatchVarShape, src: nvcv.ImageBatchVarShape, map: nvcv.Tensor, src_interp: cvcuda.Interp = cvcuda.Interp.NEAREST, map_interp: cvcuda.Interp = cvcuda.Interp.NEAREST, map_type: cvcuda.Remap = cvcuda.Remap.ABSOLUTE, align_corners: bool = False, border: cvcuda.Border = cvcuda.Border.CONSTANT, border_value: numpy.ndarray = np.ndarray((0,)), stream: Optional[nvcv.cuda.Stream] = None)
Executes the Warp Perspective operation on the given cuda stream.
- See also:
Refer to the CV-CUDA C API reference for the Remap operator for more details and usage examples.
- Args:
dst (nvcv.ImageBatchVarShape): Output image batch. src (nvcv.ImageBatchVarShape): Input image batch. src_interp (cvcuda.Interp, optional): Interpolation type used when fetching values
from the source image.
- map_interp (cvcuda.Interp, optional): Interpolation type used when fetching values
from the map tensor.
- map_type (cvcuda.Remap, optional): This determines how the values inside the map are
interpreted. If it is cvcuda.Remap.ABSOLUTE the map values are absolute, denormalized positions in the input tensor to fetch values from. If it is cvcuda.Remap.ABSOLUTE_NORMALIZED the map values are absolute, normalized positions in [-1, 1] range to fetch values from the input tensor in a resolution agnostic way. If it is cvcuda.Remap.RELATIVE_NORMALIZED the map values are relative, normalized offsets to be applied to each output position to fetch values from the input tensor, also resolution agnostic.
- align_corners (bool, optional): The remap operation from output to input via the map
is done in the floating-point domain. If
True
, they are aligned by the center points of their corner pixels. Otherwise, they are aligned by the corner points of their corner pixels.- border (cvcuda.Border, optional): pixel extrapolation method (cvcuda.Border.CONSTANT,
cvcuda.Border.REPLICATE, cvcuda.Border.REFLECT, cvcuda.Border.REFLECT_101, or cvcuda.Border.WRAP).
- border_value (numpy.ndarray, optional): Used to specify values for a constant border,
should have size <= 4 and dim of 1, where the values specify the border color for each color channel.
stream (nvcv.cuda.Stream, optional): CUDA Stream on which to perform the operation.
- Returns:
None
- Caution:
Restrictions to several arguments may apply. Check the C API references of the CV-CUDA operator.